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CALCULATION OF LINEARIZED SUPERSONIC FLOW OVER 

SLENDER CONES OF ARBITRARY CROSS SECTION 

By Vincent R. Mascitti 
Langley Research Center 

SUMMARY 

Supersonic linearized conical-flow theory is used to determine the flow over slender 
pointed cones having horizontal and vertical planes of symmetry. The geometry of the 
cone cross  sections and surface velocities are expanded in Fourier series. The sym
metry condition permits the uncoupling of lifting and nonlifting solutions. The present 
method reduces to Ward's theory for flow over a cone of elliptic cross  section. Results 
are also presented for other shapes. Results by this method diverge for  cross  -sectional 
shapes where the maximum thickness is large compared with the minimum thickness. 
However, even for these slender-body shapes, lower order solutions are good approxi
mations to the complete solution. 

INTRODUCTION 

The solution to  supersonic flow over a cone of arbitrary cross section has been 
treated extensively in the literature. References 1, 2, and 3, for example, treat this 
problem with nearly exact inviscid formulations, which admit the existence of shocks and 
vortical singularities induced by large crossflows. The present solution to linearized 
supersonic flow over a cone of arbitrary cross  section can be superimposed to obtain the 
flow over a body which changes shape longitudinally. An example of'this approach is the 
classical solution for the body of revolution obtained by the superposition of circular-
cone solutions. (See ref. 4.) The superposition approach could possibly be applied to 
the solution of the flow over wings, fuselages, and wing-body combinations. 

A general theory for the solution of slender bodies as well as cones w a s  given by 
Ward in reference 5. Ward's theory indicates that for slender bodies, the velocity poten
tial satisfies Laplace's equation in the cross-plane coordinates; and thus, the methods of 
classical hydrodynamics can be used to  obtain solutions. Ward's theory has been used in 
detail only to obtain the flow over an elliptic body (refs. 6 and 7), since the transformation 
from ellipse to circle by the Joukowski transformation is well known. 

The purpose of this paper is to present a method for determining the flow over a 
cone of arbitrary cross  section based on the assumptions of supersonic linearized theory. 
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The method of solution will not depend upon incompressible cross  flow (slender-body 
theory); therefore, results by complete linearized theory can be obtained. The method 
uses the conical-flow solutions to the wave equation first classified in reference 8. 
These solutions individually have the property of Vanishing at the Mach cone. The cone 
geometry and velocities on the surface are expanded in a Fourier series to satisfy the 
surface boundary condition. 

The validity of this method is demonstrated by comparing the present results with 
those from Ward's theory for the elliptic cone. Results from the present method are 
shown to diverge when the maximum thickness is large compared with the minimum thick
ness. Results are also presented for two cones of arbitrary cross  section with slender-
body approximations. Finally, the present method is applied to the elliptic cone without 
slender-body approximations, and results are compared with an extension of Ward's 
theory presented in reference 9. 

The method of this paper is presently restricted to cones with horizontal as well 
as vertical planes of symmetry. With this restriction, the lifting and nonlifting solutions 
can be treated separately and superimposed to obtain a complete solution. 

SYMBOLS 

kth coefficient of body-geometry expansion 

cone cross-section parameters (see fig. 1) 

function describing body surface 

nth coefficient in a series of superimposed potential solutions 

pressure coefficient 

body-geometry function, G = 7Ak COS (k0) 
k=0,1,2 

free-stream Mach number 

number of te rms  required to approximate body geometry 

total number of superimposed solutions 

individual solution to  be superimposed 



pk kth coefficient of boundary equation 

-
q velocity vector in flow field 


Rk,n kth coefficient of expansion, cos ne Gn 


'k,n kth coefficient of expansion, sin ne Gn 


U free-stream velocity 


X,YJ body-axis system 


v - 9 6  cylindrical coordinate system (see fig. 1) 


a! angle of attack, deg 


perturbation velocity potential 

Subscripts: 

integer indices 

METHOD OF SOLUTION 

Governing Equations 

A uniform supersonic stream of Mach number M flowing over a cone at an angle 
of attack a! with respect to the X-axis (fig. 1)is considered. Under the restrictions of 
inviscid flow and small velocity perturbations, the flow field can be described in terms of 
the perturbation velocity potential @ which obeys the equation 

The general solution for  the flow over a pointed body is obtained from reference 10, 
equation (18), as 
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x 

x 

where Fn(5) are functions to be determined by the surface boundary condition. If 
5 = x - pr  cosh z, then d( = 1 - pr  sinh z dz and since properties along a ray are con
stant for conical flow, 

Fn(5) = Fn( = Fn(X - p r  COSh Z) 

Then the general solution for a cone becomes 

n=oo 
+(x,r,Q)= 17Fn cos ne 

0 
( x - p r  cosh z)cosh nz dz (1)

2n n=O,1,2 'cosh-' Pr 

The integrated forms of equation (1) were first given individually in reference 8 as 
solutions to conical flow having the property that the perturbation potential vanishes at 
the Mach cone. These perturbation velocity components are 

&&= - & > Fn cos ne 
.-

cash z cosh nz dz 
ar  21r n=0,1,2 'c0sh-l pr 

and 

- 7Fnn sin ne 
0 

(x - pr  cosh z)cosh nz dz (2c) 
r a6 2nr 'cosh-' xn=0,1,2 Pr 

.Integrating equations (2) yields 

sinh nz-%k= -COZ- C1 cos 8 sinh z - Cn cos ne -n6x 
n=27374 

n=m 
2=Cop sinh z + g C 1  cos O/--(cosh z sinh z) + d+ B  

n=2,3,4
Cn cos ne 2(n + 1) 2(n - 1)

ar 

and 

n=m 

i%= g C 1  sin Okcosh z sinh z) - z] - p nCn sin ne + 1)z + sinh(n - 1)z - cosh z sinh 
r ae 

n=2,3,4 
2(n + 1) 2(n - 1) n 
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where 

and 

z = cosh" 
P r  

With the appropriate boundary condition, the term n = 0 is the required linearized 
theory solution for  the nonlifting circular cone and the term n = 1 is the solution for the 
lifting circular cone (ref. 4, pp. 215 and 223). The infinite ser ies  represents a general 
solution to a cone with an arbitrary dross section. It is expected that as the cross-
sectional shape approaches a circle, a lesser number of solutions will be required. 

If the cone is slender, that is, 

then 

sinh z =fE- 1 =-X 
2 2  P r  

and 

With the aid of hypergeometric identities, equations (3) become 

and 
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In agreement with the slender-body theory of Ward (ref. 5), the velocity components 

9 and L 2  satisfy Laplace's equation:a r  r ae 

Surface Boundary Condition 

Since any body shape can be described as B(x,r,e) = 0, the surface boundary con
dition fo r  steady flow is given by 4 - VB = 0 where 6 is the velocity vector. Com
bining these expressions gives 

a x a x  (u sin a! cos e + z ) ~cos a! +x)~+ ar a r  

-U sin a! sin 8 + 

where all quantities a re  evaluated at the body surface. For flow over a cone 

and the boundary condition becomes with rearranging 

-Usin Q! sin 8 + 

a2cWith the assumptions that a! is small and U cos a! >> 2 and with the perturbation 
velocities normalized by U, 

If G is expressed by 
k=03 
7 

G =E= 2 Ak cos k0r 
k=0,1,2 

the velocity components (eqs. (4)) can be expanded in Fourier ser ies  and the boundary 
condition can be put in the form 

>"i Pk COS ke = 0 
k=0,1,2 
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Since cos 08, cos 8, cos 28, . . ., cos k8 a r e  linearly independent, setting PO= 0, 
P1 = 0, . . ., Pk = 0 will give k linear equations for the constants Co, C l ,  
c2 ,  . . ., ck. 

If k=O
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then the cone cross section is horizontally as well  as vertically symmetric. The n-even 
velocity contributions contain'only even cosine terms, and the n-odd velocity contribu
tions contain only odd cosine terms. Rewriting the boundary condition (eq. (5)) gives 

Constant Odd cosine series Even cosine series Odd cosine series 

Therefore, with the assumption of equation (6), the n-even solutions a re  nonlifting solu
tions and the n-odd solutions a re  lifting solutions, and the two problems can be solved 
separately and independently. The nonlifting solutions obtained from equations (4) are 

n=co 

n=2,4,6 

2=) cncos ne ~ n + l  a r  
n=0,2,4 

and 

where the boundary condition from equation (5) is 

The lifting solutions obtained from equations (4) a r e  

2=> n + l c o s n e G n  
nax n=1,3,5 



n=l,3,5 
and 

$.!&!= > CnsinnBGn+l  
n=l,3,5 

where the boundary condition from equation (5) is 

-0 (cos e~ - s i n e s ) = ~ * + - -a G 1 2  
ae a r  ae r ae 

The ability to split the boundary condition into two par ts  also holds for equations (3) 
and has previously been demonstrated only for the circular cone in reference 11,page 241. 
With slender-body assumptions, the nonlifting solution contains a Mach number variation 
only in the first term of the a@/& expression, which does not enter into the solution of 
the boundary condition. The lifting solution is entirely independent of Mach number. 

Expansion Procedure 

There remains the necessity of stating the procedure by which the infinite ser ies  
are truncated and a finite solution obtained. Results of the expansion must approach 
those obtained by Ward’s theory as n approaches infinity. Since the expansion proce
dures for the lifting and nonlifting solutions are similar,  only the procedure for the non
lifting solution will be given. 

(1) Expand G in the form Ak COS kB 
k=0,2,4 

(2) Choose n = 0, n = 2, n = 4, . . ., n = N number of te rms  and expand the 
velocity equations (eqs. (7a) to (7c)) in the form 

L s =  > Cn COSne Gn = ) Cn > Rk,n COS ke
G a r  

n=O,2,4 n=0,2,4 k=0,2,4 
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and n=N n=N- 
-LS=> Cns innOGn= > c n  > Sk,+Sin k6Gr ae 

n=0,2,4 n=O,2,4 k=O ,2,4 

Although the function cos ne Gn is completely defined by a ser ies  to n(m + l), it is 
truncated at N. 

(3) Solve for the boundary condition in the form 

(4) Solve for pressure coefficients by 

This expansion procedure is best illustrated by presenting, in detail, the solutions 
for N =,0 and N = 2. These solutions are presented in the section entitled "Nonlifting 
Solutions.?' 

RESULTS AND DISCUSSION 

The expansion procedures described previously must converge to well-known solu
tions based on the same assumptions. Therefore, a comparison of results from this 
theoretical method for the elliptic cone with those from well-known solutions is an impor
tant test. 

Nonlifting Solutions 

Elliptic cone.- As an illustration of the expansion procedure, the lowest order solu
tion (N = 0) and the next to lowest order solution (N = 2) will be presented in detail for the 
elliptic coqe. The geometry function G for the elliptic cone is 

G = 3fr = (A0 + A2 COS 28 

where 

a2 + b2 A2 = b2 - a2 
2a2b2 ' 2a2b2 

and a and b are the semimajor and semiminor axis, respectively. For N = 0 the 
velocity components obtained from equations (7a) to (7c) a re  

9 




and 

1 2 = O + .  . .
G r  ae 

The boundary condition is 

By substituting in velocity components and geometry, this equation becomes 

1= (A0 + A2 COS 26)Co 

o r  

1 - AOCO- CoA2 COS 28 = 0 

and the boundary condition is now in the form 

PkCOS kO= 0 
k=0,1,2 

Therefore, 

PO= 1 - AOCO= 0 

o r  

1 2a2b2c = - e  

AO a2 + b2 

and the velocity components are 

and 

L9=0 
G r  ae 

The pressure coefficient then becomes 
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b2 

or  

4a2 2  In-a + b  - 1 + 2a2b2 
cp = a2 + b ( Pab a2 + b2(1 +a2 + b2 

For a = b (slender circular cone), 

Equation (12) agrees with that presented in reference 11, page 234. 
theory as given by Van Dyke in reference 9 is 

Cp = ab I2 In 4, - 2 +  ab 
P(a + b) 

where 
atan q = - tan 8
b 

Ward's slender-body 

This exptession can be shown to have the following Fourier ser ies  expansion in tl (see 
ref. 9): 

k=:00 

Cp = 2ab [In
P(a + b) 

- 13 + ?2b22 a2 +- b2) cos ktl 
a + b  k=0,2,4 

For  k = 2, the expression becomes 

- 1] + 2a2b2 (1 + a2 - b2 
a2 + b2 a2 + b2 

The expression for the present method (eq. (ll)),where N = 0, is repeated here for 
convenience: 

c p  = - 1) + 2a2b2 (1+ a2 - b2 cos 
(In a2 + b2 a2 + b2 

Comparison of the present method (eq. (11)) with Van Dyke's solution (eqs. (13) and (14)) 
is shown in figure 2 for M = fi, x = 1, a = tan 30' = 0.57735, and b = 0.57735, 0.5, 0.3, 
and 0.1. Although the geometry shown in this figure is far beyond the range of linear 
theory, and certainly slender-body theory, the purpose of this figure is simply to compare 
theoretical results. 

In the present method for N = 2, the velocity components (given previously as 
eqs. (7)) a re  
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2G9= -CO In - 3 C2 cos 28 G2 
ax 0 2 

a + b  a - b= -co(In ---cos
pab a + b 

& = CO+ C2 cos 28 G2 

and 

L 2 =0 + C2 sin 28 G2G r  ae 

= 0 + C2 A. sin 28 

Substituting equations (15) into the boundary condition (eq. (7d)) yields 

1 = (A0 + A2 COS 28) + C2AO COS 

- A2 sin 28(C2A0 sin 28) 

By expanding equation (16) 

- AO(Co + - (C2A02 + A2Co + 

- (c2 + C2AOA2)cos 48 = 0 

is obtained, and the boundary condition is now in the form: 

Pk COS k 8 =  0 
k=0,1,2 

Therefore, 

P o = O = 1  - A 0  

A22P2 = 0 = C2Ao2 
+ A2CO + C2 2 
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or 

A comparison of the present method for N = 2 with Van Dyke's solution is presented in 
figure 3. 

The expansion procedure just illustrated has been generalized and programed so 
that higher order solutions can be obtained. Figures 4 and 5 show results for  N = 8 
and N = 32, respectively. Although the calculation procedure does not converge for small 
eccentricity, lower order solutions are good approximations to  the complete solution. 

Arbitrary cone.- The present method has been used to calculate the pressure dis
tribution over cones with the geometry shown in figure 6. These results a r e  shown in 
figures 7 and 8 for N = 8 and N = 32, respectively. The results for the most winglike 
cone a re  diverging. 

Lifting Solutions 

The lifting solution has been shown to be independent and separable from the non
lifting solution. 'Solutions a re  obtained by superimposing n-odd solutions in the identical 
manner as was done with the nonlifting solution. Again the agreement between the results 
from the analytic solution to the lifting elliptic cone and those from the present method 
will be the important test of the expansion procedure. It should be noted that the lifting 
solutions a r e  independent of Mach number. 

Results for the elliptic cones previously examined a re  presented in figures 9 and 10 
for  N = 7 and N = 31 at a! = loo, respectively. These results also show signs of 
divergence in the thin-wing limit. 

Figure 11 shows results for the cone of arbitrary cross  section at a! = 10' for 
N = 32. Large changes in pressure a re  shown in the region where the straight-line geome
try changes to circular geometry. This trend is also indicated by the experimental data 
of reference 12. 

A listing of the computer program to calculate the pressure distribution around lift
ing cones of arbitrary cross section with slender-body theory is presented and discussed 
in the appendix. Computational time for obtaining pressures with this program has been 
estimated at 1minute per  case for N = 32 on the Control Data series 6600 computer 
system at the Langley Research Center. 
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Results Without Slender -Body Assumptions 

The present method of Fourier series expansion can be applied to the solution of the 
cone with arbitrary cross section without slender -body assumptions. The velocity com 
ponents, in this case, satisfy equations (3). Results from this solution are presented in 
figure 12 for several elliptic cones. The solid line represents results obtained using the 
"not-so-slender" solution of reference 9. The solution of reference 9 does not reduce to 
the well-known circular-cone solution of reference 4,page 214. However, the present 
method does reduce to identically the correct circular -cone solution. 

Theoretical Limitation 

For all the results shown, the present method diverges in the thin-wing limit; how
ever, the lower order solutions gave good approximations to the actual solution. 

Ward, in reference 5, indicates that slender-body theory should not be applied to 
cross-sectional shapes where the local radius of curvature is small compared with the 
maximum thickness. This restriction could explain the divergence of the present method 
as the geometry approaches a wing. It is important to  recognize that the analytic solution 
to the elliptic cone given in reference 6 was achieved only after the transformation from 
ellipse to circle by the Joukowski transformation. The results of the present paper would 
indicate that in order to  achieve converged results for arbitrary winglike cross sections, 
an initial transformation would be necessary. 

CONCLUDING REMARKS 

A Fourier ser ies  expansion procedure has been developed to solve for the flow 
around slender cones at supersonic speeds. The results for an elliptic cone reduce to 
those obtained by Ward's theory. Both lifting and nonlifting solutions to the arbitrarily 
shaped cone can be obtained, except in the thin-wing limit where the method diverges. 
The present method has been programed and applied to  cone solutions without slender-
body assumptions with good results. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Hampton, Va., June 12, 1972. 
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APPENDIX 

COMPUTER PROGRAM FOR CALCULATING THE PRESSURE DISTRIBUTION 

AROUND SLENDER CONES 

The calculation procedure described in the main body of the paper for obtaining 
pressure distributions around slender cones has been programed for high-speed digital 
computation. The purpose of this appendix is to provide a description of the necessary 
input and available output as well as a FORTRAN IV (ref. 13) listing on the source pro
gram. An example input case and the resulting output listing a re  included. 

Description of Program 

The program reads in the necessary number of lifting and nonlifting solutions to be 
superimposed. The coefficients of the required geometry function are computed by 
standard Fourier expansion ser ies  techniques (numerical integration). The matrices ' 

given by the boundary condition a r e  formed and inverted using Gaussian elimination. The 
values for Cn that result a r e  used to compute the velocity components and pressure 
distribution. The program listing that follows has the geometry of an elliptic cone built 
in. However, this geometry can readily be replaced by any arbitrary description of 
geometry. 
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APPENDIX - Continued 

Input 

A single case consists of the determination of the pressure distribution around a 
given cone at a given Mach number and angle of attack. It is necessary to  input the num
ber of terms in a Fourier expansion series to  accurately represent the cross-sectional 
shape and the number of lifting and nonlifting solutions to be superimposed. For the 
loading routine used in the program, any column except the first may be used on the input 
cards. A decimal format is used for the input quantities. A description of the required 
inputs in the correct order and the FORTRAN variables used by the source program a re  
as follows: 

FORTRAN Descriptionvariable 

$NUM1 

MM 

N 

NN 

$ 

$NUM2 

M 

ALPHA 

$ 

Arbitrary name required by the loading routine to  define the first input 
data block 

Number of te rms  necessary to  accurately define cross-section geometry 

Number of nonlifting solutions to  be superimposed 

Number of lifting solutions to  be superimposed 

Denotes end of case (column 2) 

Arbitrary name required by the loading routine to  define the second 
input block 

Free-stream Mach number 

Angle of attack, deg 

Denotes end of case (column 2) 

The system loading subroutine in the program (name list) is quite flexible in that 
the order of the input cards is unimportant and successive cases can be run by repeating 
the identification and $NUM cards followed by only the changed parameters and a $ card. 
An example of a set of input cards is given by the following listing of the inputs necessary 
to compute the pressure distribution around an elliptic cone (a = 0.57735 and b = 0.3) at 
M = 1.414 and a! = loo. 

22 
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APPENDIX - Continued 

output 

An output listing for  the example input is as follows: 

0. 
1.OOooooo0~+no 

.?.~0000000E+00 

3 ~ O 0 0 0 0 0 O O F + 0 0  
4 ~ ~ 0 0 0 0 0 0 0 E + 0 0  
~ . ~ ~ O O O O ~ O F + ~ O  
6 ~ ~ O O 0 0 0 0 0 F + 0 0  
7 . ~ 0 0 0 0 ' 0 0 0 F + 0 0  
8 . 0 0 0 0 0 0 0 0 F + 0 0  
9 ~ U O 0 0 0 0 0 0 E + 0 0  
1 . ~ ~ 0 0 0 0 0 0 F + O l  
1 . ~ ~ 0 0 0 0 0 6 F * O l  
1 .20000000E+01 
1 . 3 0 0 0 0 0 0 0 ~ + 0 1  
1.4000000GE+01 
l .~OOOO00OF+Ol 
1 .6000003UF+Ol  
1 . ~ 0 0 0 0 0 0 0 F + 0 1  
1 .~UOOOOGUF+Ol 
1 . 9 O O O O O O O F  + O l  
E'.U0GOOOUtiF+O1 
2 . 1 b 0 0 0 0 0 0 F + ' I l  
2.2UOOOOOOF+nl 
2 . 3 0 0 0 0 0 ~ 0 ~ + 0 1  
2.'+UO00000F+O1 
2 . 3  0 00 0 0 0 0 F + L; 1 
2.60 0 0 0 0 0 0 F + 0 1 
2 . 7 0 0 0 0 0 0 0 ~ + n i  
2-~OOOOOOOF+R1 
2.900000u0F+31 
3 . O O O O O O O O F + I I 1  
3 . 1 0 0 0 0 0 0 0 ~ + 0 1  
3 . ~ 0 0 0 0 0 0 0 F + 0 1  
3~3OOOOOGOE+O1 
3*4UOOOJOOF+O1 
3 ~ ~ 0 0 0 0 0 O O F + C 1  
3 bUO0 0 0  0 OF+tr 1 
3.7 0.00 0 0  c OF: + 0 1 
3 . ~ U 0 0 0 0 0 0 F + 0 1  
3 . ~ 0 0 0 0 0 0 C ~ + n 1  
4.0JU0000OE+01 
4 . 1 0 U 0 0 O d O ~ + t i l  
4 ~ ~ 0 O @ O O 0 0 F + O l  
4 ~ ~ ~ ' J O O O O O F + 0 1  

23 
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4.4uu 0000OE + u  1 
4.SuO00000E+01 
4. b C, o o o o o o E + c 1 
4 . 7 U O O O O O O F + P 1  
4.~UOOOOGOE+Cl 
4.900000UUF+Cl 
5 .00000000F+ f l l  
5*lG0OOOOOF+01 
5 .2u000000F+91 
5 .~UOOO~OUF+01  
5 4 0  0 G 0 0 0 0F+0 1 
5.50OOOOOOF+Sl 
5 60 0 0 0 0 0 O F +  0 1 
5. .7 U0 0C G 0 0 F+ C 1 
5.80G0000OF+nl  
5 . 9 0 0 0 0 0 0 @ ~ + ~ 1  
4.UOOOOOOOF+01 
6 .1000000CF+01 
6 r? 000 00 0 OE- + 0 1 
6.3OOOOOOCF+31 
6 ~ 4 ~ 0 O O O O O F + O 1  
6 . ~ ~ ~ @ 0 0 0 0 F + 0 1  
6 b o  00 0 00OF +.O1 
6.7UOOOOUOF+01 
6 . ~ 0 0 0 0 0 0 0 F + 0 1  
h . ~ 0 0 0 0 0 0 0 F + 0 1  
7.U0000Of~OE+Ol 
7 . 1 0 ~ 0 0 0 0 0 F + 0 1  
7.2!u000000F+o1 
7.33000000F+C1 
7 . r o o o o o o o ~ + n i  
7 5 3 0 0 0 0 0 0 F: + 0 1 
7 .b0000000F+01 
7~7U~OOOOUF.+O1 
7.~UOOOOOUF+01 
7~~UOOOOOOE+01  
8 ~ 0 O O O O O O ~ F + 0 1  
8 . ~ 0 0 0 0 0 0 0 ~ + 0 1  
8.2C,000000F+01 
8~3GOOOOOOF+01 
8 . ~ 0 0 0 0 0 0 0 F + 0 1  
8 .50000000E+01 
8~~OOOOOOOF+O1 
8 ~ ~ 0 0 0 0 0 0 0 � + 0 1  
8 ~ ~ 0 0 0 0 0 0 0 F + 0 1  
8 ~ ~ 0 0 0 0 0 0 0 E + 0 1  
9 . ~ ~ 0 0 0 0 0 0 E + 0 1  
9 .10000000E+01 
9~~OOOOOOOE+01  
9 .30000000F+01 
9 .40000000E+01 
9 ~ ~ 0 0 0 0 0 0 0 E + 0 1  
9 ~ ~ 0 0 0 0 0 0 0 E + 0 1  
9.7UOOOOOOF+01 
9~~0OOOOOOF+O1 
~9.~OOOOOOOE+01 
1.0000000UE+O2 
1.01OOOOOOF+O? 
1. ~ ~ O O O O O d E + ~ l 2  
1.u300000OF+OZ 
l.LJ40000OOF+02 
1.05000000E+O? 

24 




APPENDIX - Continued 

1 ~ 0 6 0 0 0 0 0 0 E + 0 2  
1 ~ ~ 7 0 0 0 0 0 0 F + 0 2  
1.O~UOOOOOF+O? 

1. O ~ O O O O O O F + ~ F !  

1.10000000F+02 

1 . 1 1 0 0 0 0 0 0 F + ~ ?  

1.12000000F+02 


'1 .13000000F+O2 

1 . 1 4 0 0 0 0 0 0 ~ + 0 2  

1.15000000E+O2 

1.16000000F+OZ 

1.17000000F+02 

l . l~GOOOOGE+O? 

1 . 1 9 0 0 0 0 0 0 ~ + 0 2  

1 . 2 9 0 0 0 0 0 0 ~ + 0 ~  

1.2100000GE+O2 

1.ZZSOOOOOE+02 
l .d300000GE+b2 
1 . 2 4 0 0 0 0 0 0 ~ + 0 2  

1.250U0000E+02 

1 2 6 0  0 0 0 0OF + 0? 
1~27UOOOOOF+O~ 
1.28 0 0 0 0 0 OF 4 . 0  2 

1. ~ Y 0 0 O O ~ b ~ + l ~ ?  

1 . 3 0 0 u 0 0 0 0 ~ + 0 ~  

1.JlU@ObOOF+rJ2 

1.3~GOOOOOF+0? 

1 . 3 3 0 0 0 0 0 ~ ~ + n ~  

1. . ~ 4 0 0 0 0 ~ ~ ~ + 0 2  
1 .35000000F+02 

1 .36000000�+0?  

1.379000UOF+G2 

1.38000UOOE+1l2 

1o39UOOOOOE+92 
1 . 4 0 0 0 0 0 u U ~ + 0 2  

1.4100OOUOE+02 

1.+2000000E+Oil  

1 . 4 3 0 0 0 0 0 0 ~ + 0 ~  

1.44000000E+02 

1.4S 0 0 0 0 0 3 F: + I) 2 

1.46OOOOOOF+O2 

1 4 7 0 0 0 0 0 I,E + 0 il 

l . '+8000000F+O? 

1 . 4 ~ 0 0 u 0 0 0 ~ + 0 2  

1 ~ ~ 0 0 0 0 G 0 0 E + 0 2  
1.5100000OF+~02 

1.52000000E+0? 

1 . 5 ~ 0 0 0 0 0 0 � * 0 2  

1.54000OGOF+02 

l .S5000000E+02  

1.56000G00F+02 

1.57000000F+02 

1 . 5 ~ 0 0 0 0 0 0 F + O ?  

1.SYOOOOUOE+02 

1.60000000E*02 

1 ~ 6 1 0 0 0 0 0 0 f + 0 2  

1 . 6 ~ 0 0 0 0 0 0 E + 1 ~ 2  

1.63000000F+V2 

1.64000GOOF*02 

1~6~OOOOOOE+02  

1 ~ 6 ~ 0 0 0 0 0 0 F + 0 2  
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APPENDIX - Concluded 

4.08629~92E-01 

~+.1784A042E-O1 

4.279076.72E-01 

4.38712943E-01 

~+.4999374oE-01 

4.61 340232E-0 1 

4.72270014E-01 

ti.82309618E-01 

4.91068529E-01 

4,98286778E-01 

5.03845408E-01 

?.07740580E-01 

5.1003238TE-01 

5.10787096E-01 


1.93576771E-01 

2.06909R3RE-01 

2.20Q82506F-01 

2.356402RRE-01 

2.5061,5?12E-0 1 

2,65542905E-01 

2.79995668E-01 

2.93524106E-01 

3.0569851 2E-01 

3.16142179E-01 

3.24451738E-01 

3.30703638E-01 

3,34449681E-01 

3.35707150E-01 


6.02206764E-01 

6.247578ROE-01 

6.4889017RE-01 

6.74353231E-01 

7.00608953E-01 

7026883137E-01 

7.522656R2E-01 

7.75833724E-01 

7,96767041E-01 

R.l442R949�+-01 

8e28397146E-01 

8.3844421RE-01 

R.4448206AE-01 

8.46494246E-01 
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Figure 2.- Comparison of results for an elliptic cone from the present method with those from 
Van Dyke's solution (ref. 9). N = 0; M = 6;a,= 0'; a = 0.57735. 
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Figure 3.- Comparison of results for an elliptic cone from the present method with those from 
Van Dyke's solution (ref. 9). N = 2; M = fi; a = 0'; a = 0.57735. 
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Figure 4.-Comparison of results for an elliptic cone from the present method with those from 
Van Dyke's solution (ref. 9). N = 8; M = E; a = 0'; a = 0.57735. 
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Figure 5.- Comparison of results for an elliptic cone from the present method with those from 
=Van Dyke's solution (ref. 9). N = 32; M = \Ti; a! 0'; a = 0.57735. 
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Figure 6.- Cone geometry for flow calculations. a = 0.57735; b = 0.3. 
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Figure 7.- Results for cones of arbitrary cross section from figure 6. N = 8; M = E;a! 0'.= 
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Figure 8.- Results fur  cones of arbitrary cross section from figure 6. N = 32; M = 6;a! = 0'. 


WI ul 



w 
Q, 

b 

0.57735 

.5 


. 3  

.1 


A 

u" 

- Taylor's solution (ref. 7) 

0 Present method 

-.4 	 - I I I I 1 I I I I 

0 20 40 60 80 100 120 140 160 180 

0 d e s  

Figure 9.- Comparison of results for lifting elliptic cones. N = 7; a! = 10'; a = 0.57735. 



, b  

0.57735 

. 5  

0 

0 


Y 

.4 

.3 


.2 

.I 

0 

-.l 


-.2 

-.3 

.3 


.1 


-Taylor’s solution (ref. 7 )  

0 P r e s e n t  method 

Q ,de57 

Figure 10.- Comparison of results for lifting elliptic cones. N = 31; a = 10’; a = 0.57735. 
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Figure 11.- Comparison of results for lifting cones. N = 32; a! = loo; a = 0.57735; b = 0.3. 
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